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ABSTRACT: Lightning strikes pose a hazard to human life and property, and can be difficult to forecast in a timely man-
ner. In this study, a satellite-based machine learning model was developed to provide objective, short-term, location-
specific probabilistic guidance for next-hour lightning activity. Using a convolutional neural network architecture designed
for semantic segmentation, the model was trained usingGOES-16 visible, shortwave infrared, and longwave infrared bands
from the Advanced Baseline Imager (ABI). Next-hour GOES-16 Geostationary Lightning Mapper data were used as the
truth or target data. The model, known as LightningCast, was trained over the GOES-16 ABI contiguous United States
(CONUS) domain. However, the model is shown to generalize to GOES-16 full disk regions that are outside of the
CONUS. LightningCast provides predictions for developing and advecting storms, regardless of solar illumination and me-
teorological conditions. LightningCast, which frequently provides 20 min or more of lead time to new lightning activity,
learned salient features consistent with the scientific understanding of the relationships between lightning and satellite im-
agery interpretation. We also demonstrate that despite being trained on data from a single geostationary satellite domain
(GOES-East), the model can be applied to other satellites (e.g., GOES-West) with comparable specifications and without
substantial degradation in performance. LightningCast objectively transforms large volumes of satellite imagery into objec-
tive, actionable information. Potential application areas are also highlighted.

SIGNIFICANCE STATEMENT: The outcome of this research is a model that spatially forecasts lightning occur-
rence in a 0–60-min time window, using only images of clouds from the GOES-R Advanced Baseline Imager. This
model has the potential to provide early alerts for developing and approaching hazardous conditions.
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1. Introduction

Lightning is a frequent hazard to life and property in most
of the world. Cloud-to-ground (CG) and in-cloud (IC) strikes
are dangerous to surface and aviation interests, respectively.
Furthermore, hazards such as large hail, severe wind gusts,
and tornadoes are usually associated with thunderstorms.

In convective updrafts, noninductive charging theory states
that charge separation occurs during collisions between un-
rimed ice particles (e.g., snow) and rimed ice particles (e.g.,
graupel, hail) that remain suspended in the mixed phase re-
gion by the updraft of a thunderstorm. Charged particles sep-
arate via three-dimensional wind shear and sedimentation.
This creates a strong electric field and eventually, lightning
(e.g., Takahashi 1978; Saunders and Peck 1999). Single-
polarization radar reflectivity can be used to identify the re-
gions of potential electrification within developing thunder-
storms by showing where graupel and hail particles exhibit
large reflectivity echoes (e.g., Shackford 1960; Hondl and Eilts
1994; Vincent et al. 2003; Mosier et al. 2011). This, when com-
bined with environmental data such as isothermal heights, can
be used to create products such as reflectivity at 08 or 2208C
(e.g., Smith et al. 2016). Large reflectivity in this temperature
range (within the mixed phase region) has been often used as

an indicator of the onset of IC and CG lightning (e.g., Seroka
et al. 2012; Mecikalski et al. 2013). Dual-polarization radar
data has also been used to nowcast lightning. Namely, differ-
ential reflectivity is used to identify hail, graupel, and super-
cooled raindrops within the mixed phase region of updrafts
(e.g., Woodward et al. 2012; Kumjian 2013). The explicit predic-
tion of lightning has been attempted via parameterizing charg-
ing processes within cloud-resolving models (e.g., MacGorman
et al. 2001; Fierro et al. 2012, 2015) and applying physics-
informed concepts to calibrate the output of numerical weather
models into a lightning forecast (e.g., McCaul et al. 2009; Lynn
et al. 2012). While numerical weather models can provide good
lightning forecasts at longer lead times than observation-based
methods, they often are resource-intensive and can lack impor-
tant timing and location specificity that observations can pro-
vide in the very near-term.

The launch of the first two satellites in the Geostationary
Operational Environmental Satellite (GOES)-R series,
GOES-16 and GOES-17, has brought improved surveillance
of atmospheric phenomena from the Advanced Baseline Im-
ager (ABI). The ABI includes a 16-band radiometer, with
2 visible channels, 4 near-infrared channels, and 10 longwave
infrared channels (Schmit et al. 2017), and has improved
spatial and temporal resolutions from the previous GOES
generation. By combining several channels into a single red–
green–blue (RGB) composite image, humans are able to seeCorresponding author: John L. Cintineo, cintineo@wisc.edu
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atmospheric signals more clearly, such as moist or dry air
masses, the thermodynamic phase of cloud tops, or the pres-
ence of volcanic ash or dust. Several such composites are per-
tinent to lightning forecasting and are in operational use (e.g.,
the daytime cloud-phase distinction RGB). Geostationary im-
agers have advantages over radar data in that they observe a
larger domain and observe cloud particles prior to the onset
of precipitation. Their main disadvantage relative to micro-
wave-sensing radar is that they do not observe larger hydro-
meters within clouds that are pertinent to lightning formation.

Machine learning techniques have been successfully applied
to observations of convection for short-term forecasting in a
number of applications (e.g., Mecikalski et al. 2015; Ahijevych
et al. 2016; Lagerquist et al. 2020; Cintineo et al. 2020a).
Seroka et al. (2012) leveraged storm-tracking and thresholds
in radar-based products to skillfully nowcast lightning, while
La Fata et al. (2021) used a random forest model and environ-
mental features to predict specifically CG lightning in the
next hour over Italy. Karagiannidis et al. (2016) employed
feature engineering to derive interest fields from geostation-
ary satellite data to predict lightning in the next hour over
Greece, with good performance.

Deep learning is a subset of machine learning that uses
multilayer artificial neural networks to deliver high accuracy
in a number of applications, including facial recognition and
object detection for self-driving vehicles. It has been used for
tropical cyclone intensity estimates (e.g., Wimmers et al.
2019), short-term tornado detection (Lagerquist et al. 2020),
satellite-derived convective intensity (Cintineo et al. 2020b),
and nowcasting radar echoes (Cuomo and Chandrasekar
2021; Ravuri et al. 2021). One advantage of deep learning
over other machine learning (ML) models and techniques is
the amount of feature engineering or extraction needed is
greatly reduced or circumvented altogether. This not only
may speed up the data collection and model training phases
of development, but also prevents investigators imposing their
own preconceptions of important features in the data, allow-
ing the model to learn for itself what is and is not important
to the problem.

Given that the spatial and multivariate context of images
are used by forecasters to discern lightning potential, we
chose to train a deep-learning model called a convolutional
neural network (CNN), which is specifically designed for im-
age inputs. Zhou et al. (2020) use such a CNN with satellite,
ground-based lightning, and ground-based radar images as in-
puts to nowcast lightning in China. Another recent approach
is that of Geng et al. (2021) and Zhou et al. (2022), where
they use recent lightning, recent surface observations and
NWP forecasts to predict lightning occurrence up to 6 h, using
a spatiotemporal model suited for sequences of images
(ConvLSTM). Geng et al. (2021) found that the inclusion of
more data sources resulted in better performance over their
evaluation domain of northern China. This research presents
a similar method to Zhou et al. (2020), but is novel in the fact
that it uses only spaceborne imager data as inputs, and is ap-
plied to the GOES-R ABI domain. As will be demonstrated,
GOES-R ABI alone can provide an excellent short-term

forecast of lightning potential, day and night, over land and
sea, for lightning initiation as well as mature storms.

2. Data and methods

a. GOES-R data

LightningCast was trained using multiple bands from
GOES-16 ABI (Schmit et al. 2017) as predictors. ABI pro-
vides frequent images of surface and atmospheric phenomena
by passively observing reflected and/or emitted radiation in
the visible, near-infrared, and infrared bands of the electro-
magnetic spectrum. The satellite is positioned at 758W longi-
tude over eastern North America and western South America.
While there are several scanning strategies for GOES-16, this
research used data from the contiguous U.S. (CONUS) scan
sector for the training process, which covers the contiguous
United States, Mexico, and adjacent oceanic regions every
5 min (see Fig. 1 for an example). While the CONUS scan sec-
tor was used for the training and validation datasets (explained
herein), the model can be applied to any ABI domain, includ-
ing mesoscale sectors, which have 1-min temporal resolution.
Full-disk scan sectors (10-min resolution) from dates indepen-
dent from the training and validation sets were used to generate
performance statistics, while independent CONUS sector
scenes were used for case studies and a lead-time analysis.
Radiances were converted into reflectances (for the visible and
near-infrared bands) or brightness temperatures (for the long-
wave infrared bands).

LightningCast uses four GOES-16 bands as predictors:
1) 0.64-mm reflectance (the “red” portion of the visible spec-
trum) with a nadir resolution of 0.5 km, 2) 1.6-mm reflectance
(shortwave infrared) with a nadir resolution of 1 km, 3) 10.3-mm
brightness temperature (longwave infrared) with a nadir reso-
lution of 2 km, and 4) 12.3-mm brightness temperature (long-
wave infrared) with a nadir resolution of 2 km. These bands
were chosen because of their applicability to cloud-top
phase discrimination (e.g., Elsenheimer and Gravelle 2019;
Pavolonis 2010). Several otherGOES-16 channels were tested
ad hoc (1.37-mm reflectance, 6.2-mm brightness temperature,

FIG. 1. An example of the GOES-16 ABI CONUS sector do-
main with 10.3-mm brightness temperature background. The red
boxes show the subdomains where patches were extracted from to
train the LightningCast model.

WEATHER AND FORECAS T ING VOLUME 371240

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:31 PM UTC



8.4-mm brightness temperature), but did not improve the
model’s performance on a validation dataset. We leave a thor-
ough investigation of all of the ABI channels to future work.

The truth or target data were created from the Geostation-
ary Lightning Mapper (GLM; Rudlosky et al. 2019; Goodman
et al. 2013) aboard GOES-16. The GLM is an optical sensor
that passively observes radiation in a single band at 777.4 nm,
covering much of the GOES-16 ABI full disk of observation.
The GLM has a near-uniform spatial resolution of approxi-
mately 10 km and the temporal resolution of the GLM level-2
files is 20 s. The GLM instrument does not distinguish be-
tween IC and CG flashes. The GLM level-2 files contain flash
data, which were processed using open-source software
(glmtools; Bruning 2021). This software transformed point-
based lightning flash, group, and event data into a gridded
field of “flash-extent density,” which depicts the number of
flashes that traverse a given location within some unit of time
(e.g., Bruning et al. 2019). The flash-extent density was also
regridded to 2-km spatial resolution matching the resolution
and domain of the 2-km ABI fixed grid.

Table 1 summarizes the data used to train the model. The
flash-extent density was accumulated for 60 min after ABI
scan times, taking the maximum value at every grid point
over the 60-min interval. Despite its diminishing detection ef-
ficiency at higher viewing angles (e.g., Rudlosky et al. 2019),
the GLM instrument was selected to provide the target field
for the training of LightningCast because of the spatial depic-
tion of total lightning (IC1 CG) that it provides from geosta-
tionary orbit. GOES-17 ABI and GLM data were used
analogously as a secondary test set, to examine how well the
model generalizes to a new spatial domain.

Due to graphical processing unit (GPU) memory limita-
tions during training, the ABI CONUS sector was divided
into five subdomains or patches (see Fig. 1). Each patch had
horizontal dimensions of 2944 3 3328 pixels at the 0.5-km res-
olution (the 1- and 2-km inputs were oversampled to 0.5-km

resolution). While six uniform patches could be extracted
from the CONUS sector domain, we chose to use only five
patches in order to exclude missing data in the space-look re-
gion of the domain (the northwest corner), which could have
made the training process unstable. ABI data were extracted
from the GOES-16 ABI level-1b files, transformed into
reflectance and brightness temperature, and reshaped into the
necessary tensor shapes (i.e., multidimensional arrays) on-
demand using a Python generator. GOES-16 GLM level-2
data were transformed into flash-extent density over the
CONUS sector domain beforehand using glmtools. The
60-min maximum flash-extent density patches were also extracted
from the subdomains on-demand during model training time.

b. Data labeling and partitioning

For this model, given a single scene or scan of ABI predic-
tors, we sought a probability of lightning within the next
60 min at each pixel. Since the problem we aimed to solve was
a binary classification problem (lightning or no lightning), the
accumulated flash-extent density was binarized at 1 flash.
Thus, the final target field for each ABI scene was a mask of
ones where there was one or more GLM-observed flashes in
the 60 min following an ABI scan time, and a mask of zeros
where no lightning was observed by GLM in the ensuing
60 min.

The dataset was broken down into the standard three parts
for machine learning: training, validation, and testing sets.
The training set contains scenes from where the model can
learn spatial and multispectral features pertinent to lightning
prediction; the validation set provides an independent assess-
ment of a model during training, which is useful for hyper-
parameter selection and helps prevent overfitting on data
from the training set; and the testing set is independent from
the training and validation sets and provides a final assess-
ment on model performance after training and hyperpara-
meter tuning. The training and validation sets were selected
from 2019 dates and the testing set was selected from 2020.
The dates were selected arbitrarily, while ensuring the train-
ing set was substantially larger than the validation set (of the
two sets used during training, the training set was approxi-
mately 75% of the total). See Table 2 and Fig. 2 for a sum-
mary of the data partitions.

An important design consideration while selecting dates
and times for the training and validation sets was the frac-
tional coverage of lightning in the patch. It is generally ac-
cepted that datasets balanced between classes train in a more
stable fashion, since the learning algorithm will not be biased
toward predicting the majority class. The two classes in this
problem are pixels with lightning in the next 60 min and pixels
with no lightning in the next 60 min. Since lightning is a rela-
tively rare phenomenon in a geostationary satellite image,
there is a natural imbalance in the partitioned sets. Instead of
balancing the classes with weights, as is frequently performed
in deep learning tasks (e.g., Ren et al. 2018), we decided to
limit the imbalance in each patch (i.e., sample): for a patch to
be added to the training or validation set, at least 2.5% of its
pixels needed to exhibit the positive class (any lightning in the

TABLE 1. The GOES-16 ABI predictors and GLM target/
truth field used to train LightningCast. The temporal resolution
is given for the three partitions of the dataset.

Channels
Spatial

resolution

Temporal
resolution

(training/validation/
testing)

GOES-16 ABI 0.64-mm
reflectance

0.5 km 5 min/5 min/10 min

GOES-16 ABI 1.6-mm
reflectance

1 km 5 min/5 min/10 min

GOES-16 ABI 10.3-mm
brightness
temperature

2 km 5 min/5 min/10 min

GOES-16 ABI 12.3-mm
brightness
temperature

2 km 5 min/5 min/10 min

GOES-16 GLM flash-
extent density
(maximum over
60 min)

10 km; remapped
to 2-km ABI
fixed grid

1 min/1 min/1min
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next 60 min). This helped ensure stability during training (i.e.,
convergence toward a solution) while also capturing enough
non-lightning scenes under a wide range of conditions. Class
weighting was also assessed, but the class weight experiments
failed to produce a well-calibrated and skillful model, so that
approach was abandoned.

An important goal of this work was to forecast the onset of
lightning (i.e., lighting initiation in storms), so keeping a lower
fractional lightning-coverage threshold appeared to help,
since more lightning initiation examples were captured.
Larger thresholds tended to skew the datasets toward scenes
with too much mature and already-electrified convection.
This threshold helped provide a balance between developing
and developed convection, while being large enough to retain
stability during the training process. One percent appeared
to be too little (the model did not converge on a solution)

and 10% appeared to be too high (not enough developing-
convection scenes).

c. Model design

LightningCast uses a CNN designed for semantic segmenta-
tion, which performs classification and localization of the clas-
ses (i.e., determines where in the image each class resides).
Ronneberger et al. (2015) pioneered this CNN model archi-
tecture in medical imagery. It is frequently referred to as a
“U-net” because of how the model looks schematically (see
Fig. 3).

The U-net contains two parts: the contracting path, which
contains convolution layers and pooling layers; and the ex-
panding path, which contains transposed convolution and
convolution layers. The convolution and pooling layers trans-
form input data into “feature maps,” or abstractions of the in-
puts. The number of feature maps often increase with depth
in the contracting path, increasing the number of features that
may be learned. The pooling layers also reduce the spatial reso-
lution of the feature maps, enabling the model to learn features
at multiple spatial resolutions in the data. The convolution op-
erator, as defined in Lagerquist et al. (2019), enables learning of
features both spatially and in a multivariate fashion (i.e., com-
bining input channels).

The expanding path uses transposed convolution layers,
which perform an inverse convolution operation while “up-
sampling” the feature maps, that is, increasing the spatial reso-
lution of the feature maps. The number of feature maps is also
typically reduced as depth decreases in the expanding path. To
better localize, high-resolution features from the contracting
path are copied and concatenated (see gray arrows in Fig. 3)
with the up-sampled output in the expanding path. The addi-
tional convolution layers can then learn to assemble a more
precise output based on the concatenated high-resolution fea-
tures (Ronneberger et al. 2015). Some U-nets have excluded

FIG. 2. The time sampling of theGOES-16 training, validation, and
testing datasets.

TABLE 2. Summary of lightning pixel fractions in the three datasets. The training and validation set domains are from the GOES-16
CONUS sector, while the testing sets are subsets of the GOES-16 and GOES-17 full-disk sectors.

Training (GOES-16
CONUS sector)

Validation (GOES-16
CONUS sector)

Testing (GOES-16/GOES-17
full-disk sectors)

Dates 2019 2019 2020
19–21, 23–24 Jan 12–13 Feb 5–9 Jan
19–21, 23–24, 27 Feb 12–15 Mar 5–9 Feb
22–29 Mar 6–10 Apr 5–9 Mar
15–30 Apr 3–8 May 5–9 Apr
10–31 May 3–8 Jun 5–9 May
10–30 Jun 3–8 Jul 5–9 Jun
10–31 Jul 3–8 Aug 5–9 Jul
10–31 Aug 3–8 Sep 5–9 Aug
10–30 Sep 8 Oct 5–9 Sep
10–11, 19–21, 25–26, 29, 31 Oct 1 Nov 5–9 Oct
27–30 Nov 14–15, 18 Dec 5–9 Nov
16–17 Dec 5–9 Dec

No. of samples (patches) 76 031 22 539 8488/8066
No. of unique date–times 31 802 9940 8488/8066
Percentage of pixels with $1

flash per 60 min
5.190% 5.344% 1.605%/0.184%
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the concatenation layers while retaining good performance
(e.g., Hilburn et al. 2021).

In LightningCast, nonlinear rectified linear unit activations
(ReLU; Nair and Hinton 2010) are used in each convolution
layer (except the last convolution layer), to enable the model
to learn nonlinear features. The last convolution layer uses a
1 3 1 pixel kernel with a sigmoid activation, forcing a proba-
bility of lightning, ranging from [0, 1]. Each ABI input chan-
nel with 1- or 2-km spatial resolution is up-sampled to 0.5-km
resolution by repeating rows and columns by a factor of 2 and
by 4, respectively, matching the 0.64-mm reflectance channel
resolution (this up-sampling step is not shown in Fig. 3).
While the output of this architecture has 0.5-km spatial reso-
lution, we use a 4 3 4 maximum pooling to reduce the spatial
resolution to 2 km, which decreases noise in the final output.

We sought to distinguish between the lightning and no-
lightning classes, so binary cross-entropy was used as the loss
function to minimize [Eq. (1)]. The pi term is the probability
of lightning in the ensuing 60 min at the ith pixel, yi is the la-
bel (1 if lightning, 0 if no lightning) for the ith pixel, N is the
number of pixels, and « is the binary cross-entropy, ranging
from [0, ‘):

« 5
1
N

∑N

i51

[yi log(pi) 1 (1 2 yi)log(1 2 pi)]: (1)

The Python computing language and Tensorflow-GPU li-
brary were used to perform the training on one NVIDIA
Quadro RTX 6000 GPU. Please see the appendix for further
model details.

3. Results

This section demonstrates output from the LightningCast
model for several examples over the United States and adja-
cent oceanic regions, and presents verification statistics for
the GOES-16 test set. LightningCast was also applied to
GOES-17 data, to evaluate its performance on a geostation-
ary scan domain that differed from the training and validation
domain. Last, the attribution and relevance of predictions is
investigated using several scenes from the examples in this
section.

a. Example scenes

1) IOWA, 28 AUGUST 2020

A cold front swept through the state of Iowa during the
afternoon of 28 August 2020. Each panel in Fig. 4 represents
a different GOES-16 ABI scan start time. The GLM flash-
extent density is plotted over the 0.64-mm reflectance, and
represents the number of accumulated GLM flashes at each
point in the 5 min previous to the ABI scan start time, so
that the lead time of the model predictions can be assessed
(i.e., ideally GLM should first observe lightning, at a given
location, after the model probability increases at that loca-
tion). The colored contours overlaid on the imagery depict
locations of LightningCast probability of lighting in the
0–60-min prediction window after the ABI scan.

Most of the vigorous convective development is along the
cold front under clear skies with no overlapping cloud cover.
The probability of lightning develops and increases over sev-
eral different sections of the cold front. Over the span of

FIG. 3. A schematic of the U-net architecture for the LightningCast model.
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about an hour, four regions of the front show local maxima
of lightning probability (Fig. 4d). Eventually, each high-
probability region exhibits numerous GLM flashes. In this
example, LightningCast results in variable lead time mea-
sured to the first GLM-observed flash for different regions
of the front, reflecting the natural variability in the rate of
thunderstorm development. The lead time varies between 5
and 30 min at the 75% probability threshold and 25–70 min
at the 25% probability threshold (Fig. 4f).

2) INDIANA–MICHIGAN–OHIO, 14 SEPTEMBER 2021

On 14 September 2021, convective cells grew within the
warm sector of a midlatitude cyclone near the Indiana/

Michigan/Ohio nexus. In Figs. 5 and 6, the background
image for the left-column panels is the daytime cloud-phase
distinction RGB, created according to the method in
Connell et al. (2021). In the left panel of each row of Figs. 5
and 6, cumulus clouds that change color from light blue to
green to yellow indicate cloud-top glaciation, which is a pre-
requisite for lightning initiation in convective clouds. The
right panel of each row shows the 0.64-mm reflectance from
GOES-16 ABI and the Multi-Radar Multi-Sensor reflectiv-
ity at 2108C (MRMS; Smith et al. 2016). The storm in north-
east Indiana (the southwest-most cell in the sequence)
exhibited a $50% probability of lightning contour (Fig. 5c)
approximately 10 min before a 40-dBZ radar echo was evi-
dent at the 2108C level (Fig. 5d), and 30 min before the

FIG. 4. (a)–(f) A select sequence of images depicting the evolution of LightningCast probabilities along a cold front
in Iowa, superimposed on 0.64-mm reflectance (grayscale) and GLM flash-extent density from GOES-16. Lead times
to the initial GLM flashes for several areas of interest are annotated in (f), showing lead times in minutes from both
the 75% and 25% probability thresholds.
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FIG. 5. (a)–(d) A select sequence of images depicting the evolution of LightningCast probabilities near the Indiana–
Michigan–Ohio nexus, superimposed on the daytime cloud-phase distinction RGB and GLM flash-extent density
from (left) GOES-16 and (right) the 0.64-mm reflectance from GOES-16 and the MRMS reflectivity at 2108C.
U.S. state abbreviations are shown in (a).
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initial GLM flash (Fig. 6c). The storm in southern Michigan
exhibited $50% probability of lightning contour (Fig. 6a)
approximately 10 min before a core of 30-dBZ was evident
in the reflectivity at 2108C (time not shown), and 35 min

before the initial GLM flash (Fig. 6d). The example demon-
strates that LightningCast can complement radar-based
methods of forecasting lightning, and potentially add lead
time to lightning initiation in some instances.

FIG. 6. As in Fig. 5, but for subsequent scan times.
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3) MISSISSIPPI, 12 AUGUST 2021

Thunderstorm activity was ongoing in eastern Mississippi
during the early evening of 12 August 2021, in a regime char-
acterized by a moist atmosphere (precipitable water . 46 mm
[.1.8 in.]), moderate convective available potential energy
(CAPE; 1500–2000 J kg21) and weak flow throughout the re-
gion [850–300-hPa mean wind , 5.1 m s21 (,10 kt)]. Thick
ice clouds can be seen in the 10.3-mm brightness temperature
in Fig. 7. Some thick ice, or convective “blowoff” from other
storms is common across east-central Mississippi. While diffi-
cult to see, cumuliform clouds begin to develop under this
convective detritus. The LightningCast probability also in-
creases during this time, in the same region (denoted by a
black circle in Fig. 7). Numerous GLM flashes were observed

between 2321 and 2345 UTC. In this area, LightningCast
exhibited 50 min of lead time at the 25% threshold, 35 min
at the 50% threshold, and 15 min at the 75% threshold, rela-
tive to the initial GLM-observed flash (at 2321 UTC). Thus,
LightningCast may be able to provide early alerts of lightning
formation to forecasters in busy situations or regions where
lightning potential may be difficult to visually discern using
standard analysis techniques.

4) EAST PACIFIC OCEAN, 13 DECEMBER 2021

In the wake of a cold front in the eastern Pacific Ocean,
low-topped convection formed in a cellular-like pattern under
a broad area of low pressure. LightningCast predicted wide-
spread probabilities exceeding 25%, with a few regions

FIG. 7. (a)–(d) A select sequence of images depicting the evolution of LightningCast probabilities in eastern
Mississippi, superimposed on the 10.3-mm brightness temperature (grayscale) and GLM flash-extent density
from GOES-16. The black circle denotes an area of attention, where GLM observes several flashes of lightning.
U.S. state abbreviations are shown in (a).
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exceeding 75%. While a few intermittent GLM flashes were
observed (e.g., red regions in Fig. 8), flashes were not ob-
served for most of the predicted regions in the ensuing
hour. This example illustrates one potential failure mode
for the model. Convection is abundant, with clouds tops
varying from approximately 7 to 9 km above sea level
and minimum 10.3-mm brightness temperatures between
230 and 220 K. While increasing the seasonal diversity
of the training set may improve model performance on
such scenes, further investigation is needed on such failure
modes.

b. GOES-16 verification

This section delves into model verification using theGOES-
16 test sets. The first test set uses a subset of the GOES-16
full-disk domain, at 10-min resolution, for the 5th–9th of each
month of 2020, resulting in 8488 unique image acquisitions (see
Table 2). Recall that the training was performed using the
GOES-16 CONUS sector domain. This expanded domain ena-
bles us to examine the applicability of LightningCast to new
regions, such as the northern portion of South America. A
secondGOES-16 test set uses CONUS sector data (also for the
5th–9th of each month of 2020) to examine lead time to new
lightning occurrences, which was an important goal in this
work.

1)GOES-16 FULL-DISK SUBSET

Since LightningCast produces probabilistic forecasts for a
binary problem (lightning or no lightning), we can binarize
the forecasts at any probability threshold p. For forecast prob-
ability pi, pi $ p is set to 1 and pi , p is set to 0, which creates
binary forecasts. Based on the binary forecasts and binary ob-
servation of future lightning for given forecast (oi), the follow-
ing are defined:

• Hit or true positive (TP); when pi $ p and oi 5 1
• False alarm or false positive (FP); when pi $ p and oi 5 0
• Correct null or true negative (TN); when pi , p and oi 5 0
• Miss or false negative (FN); when pi , p and oi 5 1

The probability of detection (POD), false alarm ratio
(FAR), and critical success index (CSI) at a given probability
threshold pi, at any given location (or pixel) in the domain
can then be defined as

POD 5

∑
TP

∑
TP 1

∑
FN

, (2)

FAR 5

∑
FP

∑
TP 1

∑
FP

, (3)

CSI 5

∑
TP

∑
TP 1

∑
FN 1

∑
FP

: (4)

POD, FAR, and CSI range from [0, 1], with 1 (0) being per-
fect for POD and CSI (FAR). The CSI is the accuracy of the
model neglecting true negatives, and is a better representation
of model performance than binary accuracy for rare-occurring
events (the test set contained 1.6% lightning samples).1 The
probability threshold that achieved the highest CSI on the val-
idation set was pi 5 36% (we use the approximation pi 5
35% in Fig. 11).

Overall, for the full-disk-subset test dataset, the predicted
probability threshold maximizing the CSI was 45%, but
35%–55% exhibited similar CSI, of approximately 0.4 (Fig. 9).
Probabilistic predictions should also be skillfully calibrated,
that is, the forecast probability and frequency of lightning
should be the same for a given probability. The attributes dia-
gram (Fig. 10) shows an overprediction bias in each probabil-
ity bin, but with each bin contributing skillfully to the Brier
skill score when measured against the frequency of lightning
in the test dataset (i.e., “climatology”). The Brier score measures
the accuracy of probabilistic predictions and is equivalent to the
mean squared error for binary classification (Wilks 2006), while
the Brier skill score measures improvement over climatology, in
this case. Performance on the validation set indicated a higher
(i.e., better) Brier skill score than the test set. The overpredic-
tions could be a result of an expanded spatial domain or a more
uniform seasonal distribution in the test set, or a combination of
both, resulting in cloud types or regimes that were underrepre-
sented during the training process. While further investigation is
needed to understand and correct the overprediction, it is prom-
ising that the probabilistic predictions are skillful on new data.

The POD, FAR, and CSI were computed on a per-pixel ba-
sis over on the GOES-16 test set. The POD was generally
0.6–0.8 and the FAR was 0.3–0.5 for most locations. This
yielded CSI scores of 0.35–0.55 for most regions (Fig. 11) and
includes lightning initiation and developed thunderstorms.
The CSI of the model appears to be better over land than

FIG. 8. LightningCast predictions (colored contours), superim-
posed on the 0.64-mm reflectance and GLM flash-extent density
fromGOES-17, for a scene in the eastern Pacific Ocean.

1 A model that forecasted 0% all the time would achieve an ac-
curacy of 0.984, with 1 being perfect.
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over water. This may be a result of the fact that maritime
storms have lower vertical velocities and lower liquid water
fluxes, in general, when compared to continental storms (e.g.,
Lucas et al. 1994). Solomon and Baker (1998) suggest that
maritime storms exhibit increased coalescence, removing
much of the liquid water before it reaches the freezing level,
diminishing lightning production. Maritime storms also typi-
cally have lower aerosol particle concentrations, reducing
cloud condensation nuclei, and thus reducing the vertical liq-
uid water fluxes of storms (e.g., Thornton et al. 2017). This
suggests that such processes (e.g., liquid water fluxes) are
more difficult to discern for the model over water than over
land, using only satellite imager inputs. Nonetheless, the CSI
performance over water still appears to be quite good, overall.

The FAR is rather high in several oceanic regions, exceed-
ing 0.8 (e.g., portions of the east Pacific and North Atlantic).
While many of these locations have very little lightning activ-
ity (evidenced by the event count image in Fig. 11), making it
difficult to draw conclusions, some locales have an adequate
event count, such as the east Pacific Ocean (an event is the oc-
currence of maximum GLM flash-extent density of at least
one flash over an ensuing 60-min period). Our hypothesis for
the lower performance in this region is meteorological in na-
ture}storms in this region, while still deep convection, tend
to exhibit less lightning overall due to decreased vigor in up-
drafts compared to continental updrafts (e.g., LeMone and
Zipser 1980; Lucas et al. 1994; Solomon and Baker 1998;
Thornton et al. 2017).

In regions where lightning is very rare, this analysis will also
be more sensitive to missed GLM detections, so we may expect
reduced scores in such regions. The GLM’s detection efficiency

is not perfect}for example, optical extinction due to a large
cloud water path can greatly reduce the number of observed
flashes (Rutledge et al. 2020; Bateman and Mach 2020). Thus, a
missed detection in a region where there is only one flash in the
ensuing 60 min could erroneously result in a false alarm.

Seasonally, LightningCast shows very consistent perfor-
mance during the months of April through September, with
maximum CSI ranging between 0.4 and 0.5, with a 35%–40%
probability threshold range (Fig. 12). Comparatively, the
months of January–March, and October show a reduced per-
formance, while November and December have a CSI of
about 0.25–0.3. The best CSI occurs at probability thresholds
of 55%–65% for November, December, and January. During
these three months, the FAR is higher for most probability
thresholds (not shown), which indicates some overprediction
for these months (i.e., the observed frequency of lightning is
less than the predicted frequency at a given probability level).
This reduced performance may be due to relatively more
prevalent tropical and subtropical convection, but we posit
that this is a result of the relative dearth of training samples
from these months, due to sample-patch selection criteria
favoring a larger spatial coverage of lightning, relative to
patches with sporadic observations of lightning (see section 2b).
Increasing the number of training samples in these months
could produce a sizeable improvement in performance, as there

FIG. 10. An attributes diagram for the LightningCast model, for
the same test dataset as in Fig. 9. The red line represents the fre-
quency of next-hour lightning, given a certain forecast probability.
The diagonal dashed gray 1-to-1 line represents perfect reliability
or forecast calibration. The vertical dashed gray line is the climatol-
ogy y, or frequency of lightning for the test dataset. The horizontal
dashed gray line is the no-resolution line (produced by always fore-
casting y). The diagonal blue line represents the line of “no skill”
with respect to climatology, or where the Brier skill score is zero.
This line separates the area where forecasts contribute positively to
the Brier skill score (shaded blue) and where forecasts contribute
negatively to the Brier skill score (white). The red-outlined bars
show the prediction frequency for each probability bin, normalized
between 0 and 1.

FIG. 9. A performance diagram for the LightningCast model on
a test set, which was a subset of the GOES-16 ABI full-disk sector.
The dashed gray lines show frequency bias and the filled blue color
shows CSI. Red circles represent select probability thresholds
(from top left to bottom right): 5%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, and 95%.
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was a reduced number of training and validation samples in
January–March and November–December, relative to the
months of April–October (see Fig. 2).

Overall, LightningCast performs best during the day, with
a little reduced performance during nighttime (it was deter-
mined to be “daytime” at a location if its solar-zenith angle
was #888). This improved daytime performance is small but
fairly consistent during the warm season (May through
September), when thunderstorms are most numerous in
North and Central America. This improved performance is
most stark during February–April, though it is unclear
why. December shows an inverse of this, with nighttime
performance being better.

2)GOES-16 CONUS SECTOR

To investigate the lead time offered by LightningCast, we
used theGOES-16 CONUS sector instead of the full-disk sec-
tor; the former has 5-min temporal resolution and the latter
10-min resolution. Thus, the higher temporal resolution

provides a more accurate estimate of lead-time expectation.
Similar to the full-disk test set, the dates for this set were also the
5th–9th of each month of 2020. In an effort to isolate lead time to
lightning initiation, a few conditions were introduced. The pur-
pose of these conditions was to capture only lightning initiation
or new storms advecting into a location. It is important to pro-
vide lead time to initial lightning flashes so that we may diagnose
if the model provides adequate warning for taking mitigating ac-
tion. Providing lead time to advecting lightning activity is also im-
portant, and can approximate the time of arrival of lightning,
particularly when the trend of probability is plotted as a function
of time. These two conditions facilitated the analysis:

1) The set of points to evaluate, P, were selected at ap-
proximately every 80 km over the CONUS domain,
striding the image in both spatial dimensions. Let each
point be denoted as Pij.

2) Each point Pij was spatially buffered by approximately
10 km in both spatial dimensions, denoted as b. Let the
set of points within buffer b of Pij be denoted as Pb.

FIG. 11. The (top left) POD, (top right) FAR, (bottom left) CSI, and (bottom right) event count for theGOES-16
test set (full-disk subset).
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Striding each image to generate the set of points P reduced
the redundancy of samples among neighboring pixels. The
spatial buffer criterion of 10 km helps capture the predictions
and lightning observed “nearby” point Pij. After the probabil-
ity of lightning was computed for the entire domain at time t0,
the maximum probability and GLM flash-extent density
within Pb were recorded.

To measure lead time to the next lightning observation within
Pb and within the ensuing 60 min (from t01 5 to t01 60), if any
lightning was observed, two different criteria were evaluated:
1) if no lightning was observed within Pb at t0 only, but lightning
was observed within t01 5 to t01 60, then lead time could be mea-
sured at select probability thresholds, and 2) if no lightning was
observed within Pb and within the previous 30 min, between t0
and t0–30, then lead time could also be measured to the next
lightning observation within 60 min (t01 60). The second crite-
rion, the lightning “onset criterion,” reduces the occurrence of
storms with pulsing or intermittent lightning at Pb, that is, storms
that may exhibit one or more 5-min periods without lightning
within Pb. Using the onset criterion better captures new light-
ning activity at a location, including lightning initiation.

This analysis used CONUS scans at 5-min temporal resolu-
tion, and thus we also used corresponding GLM flash-extent
density at 5-min resolution, with the flash-extent density max-
accumulated over 5-min increments. Thus, this quantizes the
measured lead time into 5-min bins. Since we do not know
when in the 5-min increment that lightning was observed,
2.5 min was subtracted from each lead-time measurement to
provide an unbiased estimate. For example, if the probability of
lightning was p at t0 and there was no lightning at t0, but light-
ning was observed 5 min in the future, the recorded lead time is
2.5 min at threshold p.

By screening out intermittent convection with the onset cri-
terion, we can ascertain lead time for storms initiating light-
ning at a given location. Aggregating over the set of points P
and all times in this test set, the median lead time to the first
flash is 17.5 min at the 30% and 40% thresholds (Fig. 13),
which contained the most-skillful range for the validation set.

Without the lightning onset criterion, the median was reduced
to 12.5 min in this probability range.

Thus, for the most skillful probability range with the light-
ning onset criterion (which is more applicable for new light-
ning at a location), lead time of at least 17.5 min to the first
flash was attained half of the time, while a quarter of the true-
positive predictions measured 32.5 min or more of lead time.
These results demonstrate that LightningCast can provide
ample lead time for a number of applications.

c. GOES-17 application

The ABI’s infrared detectors must be very cold to accurately
measure thermal radiation from Earth (NOAA/NESDIS 2021).
Unfortunately, the loop heat pipe (LHP) on GOES-17, which
regulates the temperatures of the infrared detectors, proved
faulty soon after the checkout period for the satellite. This
makes certain ABI bands particularly noisy and unusable dur-
ing certain periods of the year. One of LightningCast’s predic-
tors, the 12.3-mm brightness temperature, is severely affected
by the LHP problem. Thus, in order to evaluate LightningCast
on the GOES-17 domain, a very similar model was trained, us-
ing only the 0.64- and 1.6-mm reflectances and the 10.3-mm
brightness temperature on GOES-16.2 We applied the three-
channel version of LightningCast, trained using GOES-16, to
GOES-17 in order to investigate how well the model general-
izes to new spatial domains and viewing angles. This evaluation
uses a subset of the GOES-17 full-disk sector for the 5th–9th of
each month of 2020.

Using the best-performing probability threshold from the val-
idation set (35%), we see that the model has good performance
in certain regions, but less so in others. In particular, from

FIG. 13. Distributions of lead time to the first lightning flashes,
aggregated across the GOES-16 ABI CONUS sector test set, for
both when the lightning onset criterion was applied (orange) and
when it was not (blue). Thick horizontal lines indicate median
lead-time values for each distribution, while thinner horizontal
lines indicate the 75th and 25th percentiles.

FIG. 12. The maximum CSI and associated probability threshold as
a function of month and day or night.

2 The three-channel model applied to the GOES-16 validation
dataset decreased maximum CSI by 0.011.
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Fig. 14, the CSI is between 0.3 and 0.5 in the vicinity of Hawaii,
the western United States, and parts of the northern belt of con-
vection along the intertropical convergence zone (ITCZ). This
is generally comparable to the GOES-16 performance in many
locations. However, low CSI (#0.2) is apparent in much of the
ITCZ belt of convection and in the northern Pacific Ocean,
owing to high FAR ($0.8). Part of this reduced perfor-
mance may be due to the exclusion of the 12.3-mm bright-
ness temperature, but we attribute much of it to clouds in
meteorological regimes very different from the training and
validation data, as well as potentially missed detections of in-
frequent lightning from GLM [see discussion in section 3b(1)].
The GOES-17 domain contains mostly oceanic regions, and
while oceanic storms have less vigor than their continental
counterparts (e.g., Lucas et al. 1994; Solomon and Baker
1998), the GOES-16 test set exhibited good performance in
many oceanic regions. In the North Pacific, differences could
be partially attributable to differences in the oceanic currents.
For example, the more energetic Gulf Stream of the Atlantic

may be able to provide better forcing for convection that pro-
duces lightning, compared to the North Pacific Drift current.
Climatological observations reveal the fact that storms in the
central Pacific Ocean exhibit much more intermittent and less
frequent lightning than those in much of the western Atlantic
Ocean (e.g., Orville and Henderson 1986; Cecil et al. 2014).

In the tropics, it is well established that convective updrafts
are generally weaker over oceans than over land due to a
number of reasons, but chiefly “skinnier” CAPE vertical pro-
files (e.g., LeMone and Zipser 1980; Lucas et al. 1994), leading
to less lightning over ocean (e.g., Cecil et al. 2005; Liu and
Zipser 2005; Liu et al. 2012). However, tropical maritime up-
drafts are still deep enough to develop cumulonimbus clouds
to the anvil stage, with cold cloud tops. Tall, cold clouds that
produce infrequent or no lightning appear to cause overpre-
diction of lightning in the deep tropics. Training a model using
GOES-17 data may improve performance, but more analysis
is needed to determine if additional training samples from this
domain alone will help, or if additional predictors will increase

FIG. 14. The (top left) POD, (top right) FAR, (bottom left) CSI, and (bottom right) event count for theGOES-17
test set (full-disk subset), using a three-channel version of LightningCast.
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the performance in these regions. Regardless, this analysis
demonstrates some success in portability of LightningCast to
different domains, and end users of GOES-17 data can still
benefit from the three-channel LightningCast model.

d. Prediction attribution and relevance

This section explores the attribution of LightningCast pre-
dictions for several of the image times shown in Figs. 4, 5, and
7. We employ a method called layer-wise relevance propaga-
tion (LRP; Alber et al. 2019), to find the “relevance” or im-
portance of each pixel in each predictor for a given prediction
made by LightningCast. LRP is a process that aims to track
relevance backward from an output neuron (i.e., pixel) to
each channel/predictor of the input image. The process pro-
gressively tracks backward in the network, finding which neu-
rons in the prior layer were most responsible for the values of
a neuron in the later layer [see Alber et al. (2019), Montavon
et al. (2019), and Toms et al. (2020) for details and implemen-
tation of LRP]. We used an implementation of the LRP-Z
Plus rule (Bach et al. 2015), which approximates positive attri-
bution for a prediction at a given pixel, locating regions in the
input images that contributed to the predicted probability.3

The three samples in Fig. 15 can be found in the examples
presented previously}row A of Fig. 15 is from northeast
Iowa (see Fig. 4c), row B is from northeast Indiana (see
Fig. 5b), and row C is from eastern Mississippi (see Fig. 7b).
The pixel of interest in each row is marked by a black “X”

in the relevance columns (second through fifth columns),
while the predicted probability of lightning is found in the
lower right corner of the first column, given as a percentage.
The first columns show the daytime cloud-phase distinction
RGB for each sample.

In samples A and B, several features stand out as important
for the predicted probability of lightning. Pixels with high
0.64-mm reflectance in cumulus clouds near the pixel of inter-
est contribute to the probability. These clouds also appear to
be either glaciated or beginning to glaciate (notice the green-
ish tint of the clouds in the RGBs). The spatial gradients of
the 1.6-mm reflectance channel around cumulus clouds are
also flagged as important. These gradients can be most easily
seen in sample B, to the north and east of the glaciated cloud

FIG. 15. Relevance plots for the input channels of LightningCast for three examples. The first column shows the daytime cloud-
phase distinction RGB for the three examples, with the predicted probability in the lower-right corner. That probability is valid for
the pixel immediately to the southeast of the black “X” found in each relevance plot (remaining columns, from left to right). Sample
A is from northeast Iowa at 1911 UTC 28 Aug 2020 (see Fig. 4c), sample B is from northeast Indiana at 1656 UTC 14 Sep 2021 (see
Fig. 5b), and sample C is from eastern Mississippi at 2251 UTC 13 Aug 2021 (see Fig. 7b).

3 Please see appendix B in Hilburn et al. (2021) for further de-
tails on implementing LRP for a U-Net model.
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that is southwest of the pixel of interest. Close inspection of
the 1.6-mm relevance in samples A and B reveals other areas
where the spatial gradient of the reflectance is important. The
spatial gradient of the 10.3-mm brightness temperature is also
found to be highly relevant. Evident in both samples A and B,
but particularly in sample B, strong brightness temperature gra-
dients around the main line of cumulus clouds are highlighted
as very relevant. In both samples, high relevance is also found
in pixels very close to the pixel of interest, exhibiting high
0.64-mm reflectance in clouds that appear to be almost glaciat-
ing. The 12.3-mm brightness temperature in both samples A
and B appears to have low relevance, compared to the other
three channels.

Sample C is very different from samples A and B, with an-
vil clouds enveloping the pixel of interest. Relevance for the
two reflective channels (0.64 and 1.6 mm) is more muted com-
pared to that of samples A and B. However, cold, glaciated
clouds at the pixel of interest are still deemed relevant, as well
as some cumulus clouds underneath the thick ice, to the south
of the pixel of interest. The 10.3-mm relevance also highlights
this feature, as well as the cold clouds in the general vicinity
of the pixel of interest. Several features to the south are rele-
vant to a lesser extent, including some brightness-temperature
gradients around cumulus clouds. Most interesting about sam-
ple C is the very high relevance found in the 12.3-mm bright-
ness temperature. In a scene where the influence of the
reflective bands is subdued, the 12.3-mm brightness tempera-
ture appears to be greatly contributing to the probability. The
main features highlighted to the south of the pixel of interest
in the 12.3-mm relevance plot appear to be cumulus clouds (or
gradients around them) beneath the thick ice of the anvil.

The practice of pixel-level attribution of artificial intelli-
gence models is still maturing and there is no standard set of
rules or methods for determining relevance or channel impor-
tance in such models. While different interpretation methods
may show some different results, we believe the analysis on
the three aforementioned cases shows: 1) reflective, glaciating
clouds are important for increasing the probability of light-
ning; and 2) strong spatial gradients around clouds are impor-
tant for lightning probability, possibly indicating key spatial
patterns in typical scenes of lightning production (e.g., glaciat-
ing cumulus fields). Further investigation is needed to deter-
mine additional patterns or modes in satellite imager data
that are relevant to lightning production. Nevertheless, the
complex spectral and spatial patterns that are relevant to
nowcasting lightning would be difficult to capture without the
use of deep learning designed for computer vision problems.

4. Summary and discussion

We developed a convolutional neural network, LightningCast,
that uses GOES-R ABI channels to predict the probability of
lightning in the next 60 min for every Earth-located pixel in a
given satellite domain. Using the 0.64-mm reflectance (0.5-km res-
olution), the 1.6-mm reflectance (1-km resolution), the 10.3-mm
brightness temperature (2-km resolution), and the 12.3-mm
brightness temperature (2-km resolution) as predictors and
next-hour GLM flash-extent density as the truth or target field,

LightningCast was found to make skillful predictions (CSI ∼
0.4) day and night, over land and sea, for both advecting and
developing storms. For a seasonally balanced GOES-16 test
dataset covering the contiguous United States, Mexico, north-
ern South America, and adjacent oceanic regions, the model
exhibited very consistent performance for the months of April
through September, when lightning was most prevalent, with
degraded, but useful skill in other months. Daytime predic-
tions were slightly more accurate than nighttime predictions,
while continental predictions were generally more accurate
than maritime predictions. To test the limits of generalization,
we created a second test set usingGOES-17 data over the west-
ern United States and eastern Pacific Ocean. The GOES-17
LightningCast critical success index (CSI) over the western
United States was comparable to GOES-16, but was relatively
low over the Pacific Ocean, where lightning is less common.
Further investigation is needed to determine if geographic and
seasonal performance gaps could be addressed with additional
training or additional model input features. Regardless, Lightning-
Cast performs well in many locations and meteorological regimes,
even outside of the domain of the training dataset.

When isolating new convection in localized regions, we
found that for half of true-positive forecasts, LightningCast
yields nearly 20 min or more of lead time to the initial flash at
a location (as observed by GLM) relative to the most skillful
probability thresholds (30%–40%). LightningCast can com-
plement data from ground-based radar networks (when avail-
able) by extending lead time and increasing forecaster situational
awareness. LightningCast helps to quantify the lightning poten-
tial information intrinsic in the qualitative multispectral satellite
imagery, representing a truly new capability for lightning now-
casting without a reliance on radar.

There are a number of direct applications of LightningCast.
The U.S. National Weather Service provides decision-support
services. These services include providing rapidly updating
lightning threat guidance for outdoor events. LightningCast
could be used directly by forecasters to assist in providing ob-
jective guidance to these users in a timely manner. Lightning-
Cast could aid forecasters at NOAA’s Ocean Prediction
Center or Aviation Weather Center as they issue guidance and
routine products for mariners and aircraft to avoid convection.
Model output could potentially be used to give emergency
managers early guidance for lightning potential in fire-prone
areas, or help forecasters determine the timing and location of
convective initiation.

At the time of this publication, LightningCast is running in
near-real time at the University of Wisconsin–Madison for
several GOES-16 and GOES-17 sectors.4 LightningCast will
also be evaluated in several NWS testbeds during 2022 to test
its applicability in NWS operations. While a satellite-inputs-
only model may always be useful because of the large domain
it can cover, there a number of ways to derive more tailored
models, which we hope to explore. These include using NWP
data and Multi-Radar Multi-Sensor data to both extend lead

4 Near-real-time output is available at https://cimss.ssec.wisc.
edu/severe_conv/pltg.html.
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time and to provide more precise spatial forecasts of lightning.
Using multiple time frames of data may improve the skill of
the model (e.g., Zhou et al. 2022), but at the cost of a more ex-
pensive training phase due to increased model complexity and
training multiple models for different temporal resolutions of
satellite images (e.g., 1-, 5-min, etc.). Simply using the current
lightning observations to predict the next-hour lightning could
improve performance; however, doing so may also decrease
lead time to the first flash, which would be very undesirable,
and thus should be carefully examined. While a nowcast of
one flash or more is important from a lightning initiation
standpoint, several operational forecasters have noted that
forecasts of more substantial lightning [e.g., 10 or 20 flashes
per 5 min] would also be valuable.

Since LightningCast only depends on one snapshot in time,
it can be applied to nonpermanent scan sectors, such as the
1-min mesoscale sectors from ABI. In practice, Lightning-
Cast takes 1–3 s to compute probabilities for the mesoscale
sectors and 20–30 s for the CONUS sector, using modest
CPU-based computing. The imager aboard Japan’s Hima-
wari satellites (AHI) is very similar to ABI. Furthermore,
Europe’s third-generation geostationary satellites, Meteosat
Third Generation (MTG), will also provide imagery similar
to the ABI. Both satellites present an opportunity to test
the applicability of LightningCast on similar instruments
but very different domains. While some retraining may be
needed to optimize performance, near global lightning now-
casts are likely possible.
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APPENDIX

Model Training Details

The LightningCast model is a convolutional neural net-
work described in section 2c and Fig. 3. We provide further
model details here. We used the Adam optimizer, which is

a popular stochastic gradient descent method based on
adaptive estimation of first-order and second-order mo-
ments (Kingma and Ba 2014). The minibatch size was 1,
since that was the maximum number of samples or patches
that could be stored in our GPU memory. The samples
were randomly shuffled before each epoch. We normalized
the input data by subtracting the mean and dividing by the
standard deviation on a per-channel basis, which were
found a priori on a subset of the full dataset. We trained
for 15 epochs, stopping early when validation loss did not
increase after 4 epochs. Thus, the epoch with the lowest
validation loss was epoch 11, which was the checkpoint
model used in this paper (a model was saved after each ep-
och if validation loss was a new minimum). The initial
learning rate was 0.0003, decreasing by a factor of 10 after
each epoch where validation loss did not decrease. All fea-
ture maps were zero-padded such that the size of the out-
put feature maps was the same as the size of the input fea-
ture maps.
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